A primary battery or primary cell is a Electric battery (a galvanic cell) that is designed to be used once and discarded, and it is not rechargeable unlike a secondary cell (rechargeable battery). In general, the electrochemistry reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as and portable radios.
Primary batteries make up about 90% of the $50 billion battery market, but secondary batteries have been gaining market share. About 15 billion primary batteries are thrown away worldwide every year, virtually all ending up in landfills. Due to the toxic heavy metals and strong acids and alkalis they contain, batteries are hazardous waste. Most municipalities classify them as such and require separate disposal. The energy needed to manufacture a battery is about 50 times greater than the energy it contains. Due to their high pollutant content compared to their small energy content, the primary battery is considered a wasteful, environmentally unfriendly technology. Due mainly to increasing sales of and cordless which cannot be economically powered by primary batteries and come with integral rechargeable batteries, the secondary battery industry has high growth and has slowly been replacing the primary battery in high end products.
The remaining market experienced increased competition from private- or no-label versions. The market share of the two leading US manufacturers, Energizer and Duracell, declined to 37% in 2012. Along with Rayovac, these three are trying to move consumers from zinc–carbon to more expensive, longer-lasting alkaline battery.
Western battery manufacturers shifted production offshore and no longer make zinc-carbon batteries in the United States.
China became the largest battery market, with demand projected to climb faster than anywhere else, and has also shifted to alkaline cells. In other developing countries disposable batteries must compete with cheap wind-up, wind-powered and rechargeable devices that have proliferated.
Primary cells are not designed for recharging between manufacturing and use, thus have battery chemistry that has to have a much lower self-discharge rate than older types of secondary cells; but they have lost that advantage with the development of rechargeable secondary cells with very low self-discharge rates like low self-discharge NiMH cells that hold enough charge for long enough to be sold as pre-charged.
Common types of secondary cells (namely NiMH and Li-ion) due to their much lower internal resistance do not suffer the large loss of capacity that alkaline, zinc–carbon and zinc chloride ("heavy duty" or "super heavy duty") do with high current draw.
Reserve battery achieve very long storage time (on the order of 10 years or more) without loss of capacity, by physically separating the components of the battery and only assembling them at the time of use. Such constructions are expensive but are found in applications like munitions, which may be stored for years before use.
Attempts have been made to make simple cells self-depolarizing by roughening the surface of the copper plate to facilitate the detachment of hydrogen bubbles with little success. Electrochemical depolarization exchanges the hydrogen for a metal, such as copper (e.g. Daniell cell), or silver (e.g. silver-oxide cell).
Inside the cell the anode is the electrode where chemical Redox occurs, as it donates electrons which flow out of it into the external circuit. The cathode is the electrode where chemical Redox occurs, as it accepts electrons from the circuit.
Outside the cell, different terminology is used. As the anode donates positive charge to the electrolyte (thus remaining with an excess of electrons that it will donate to the circuit), it becomes negatively electric charge and is therefore connected to the terminal marked "−" on the outside of the cell. The cathode, meanwhile, donates negative charge to the electrolyte, so it becomes positively charged (which allows it to accept electrons from the circuit) and is therefore connected to the terminal marked "+" on the outside of the cell.John S. Newman, Karen E. Thomas-Alyea, Electrochemical systems, Wiley-IEEE, 3rd ed. 2004,
Old textbooks sometimes contain different terminology that can cause confusion to modern readers. For example, a 1911 textbook by Ayrton and MatherW. E. Ayrton and T. Mather, Practical Electricity, Cassell and Company, London, 1911, page 170 describes the electrodes as the "positive plate" and "negative plate" .
Comparison between primary and secondary cells
Polarization
Terminology
Anode and cathode
See also
External links
|
|